Theorem:
The potential energy U of an extended object is equal to the product of the total mass M, the gravitational constant g, and the y -coordinate of the center of mass, y_{cm}.

$$
U=M g y_{\mathrm{cm}}
$$

It does not matter how the object is oriented as long as the height of the center of mass is known.
Proof:
Suppose we have an object (such as a rod) of length L whose with density $\lambda(y)$ where y is some linear dimension. We can divide the object into an infinite number of infinitesimally thin cross sections each of which contributes a potential energy equal to

$$
\begin{equation*}
\mathrm{d} U=g y \mathrm{~d} m \tag{Equation1}
\end{equation*}
$$

Since $\lambda(y)=\frac{\mathrm{d} m}{\mathrm{~d} y}$, we can substitute $\mathrm{d} m=\lambda(y) \mathrm{d} y$, resulting in

$$
\begin{equation*}
\mathrm{d} U=g y \lambda(y) \mathrm{d} y \tag{Equation2}
\end{equation*}
$$

We compute the overall energy by integrating these energies from $\mathrm{y}=0$ to $\mathrm{y}=\mathrm{L}$

$$
\begin{align*}
& U=\int_{0}^{L} g y \lambda(y) \mathrm{d} y \\
& U=g \int y \lambda(y) \mathrm{d} y \tag{Equation3}
\end{align*}
$$

Meanwhile, the center of mass of the object is located at

$$
\begin{gather*}
y_{\mathrm{cm}}=\frac{\int_{0}^{L} y \lambda(y) d y}{\int_{0}^{L} \lambda(y) d y} \\
y_{\mathrm{cm}}=\frac{1}{M} \int_{0}^{L} y \lambda(y) d y \tag{Equation4}
\end{gather*}
$$

Solving Equation (4) for the integral, and substituting into Equation (3), we arrive at

$$
\begin{equation*}
U=M g y_{\mathrm{cm}} \tag{Equation5}
\end{equation*}
$$

This equation means that the potential energy depends only on the total mass and the height of the center of mass-but not on orientation of the object relative to its center of mass.

Example:

Suppose you have a thin rod of length L whose density is proportional to the distance from one end according to $\lambda(y)=k y$ where k is a constant.

The total mass of the rod is

$$
\begin{equation*}
M=\int_{0}^{L} \mathrm{~d} m=\int_{0}^{L} \lambda \mathrm{~d} y=\int_{0}^{L} k y \mathrm{~d} y=\frac{1}{2} k L^{2} \tag{Equation1}
\end{equation*}
$$

According to Equation 4, the center of mass of the rod is located at

$$
\begin{equation*}
\frac{\int_{0}^{L} y \mathrm{~d} m}{M}=\frac{\int_{0}^{L} y \lambda \mathrm{~d} y}{\frac{1}{2} k L^{2}}=\frac{\int_{0}^{L} k y^{2} \mathrm{~d} y}{\frac{1}{2} k L^{2}}=\frac{\frac{1}{3} k L^{3}}{\frac{1}{2} k L^{2}}=\frac{2}{3} L \tag{Equation2}
\end{equation*}
$$

If this rod is orientated so that all of its mass is located at a height of L, then its potential energy is

$$
\begin{equation*}
U=M g y_{\mathrm{cm}}=\left(\frac{1}{2} k L^{2}\right) g L=\frac{1}{2} k g L^{3} \tag{Equation3}
\end{equation*}
$$

If the rod is orientated upright so that the least dense end is touching the ground, then its $y_{\mathrm{cm}}=\frac{2}{3} L$, so

$$
\begin{equation*}
U=M g y_{\mathrm{cm}}=\left(\frac{1}{2} k L^{2}\right) g\left(\frac{2}{3} L\right)=\frac{1}{3} k g L^{3} \tag{Equation4}
\end{equation*}
$$

This is $2 / 3$ of the maximum potential energy.
If the rod is inverted so its densest end touches the ground, then $y_{\mathrm{cm}}=\frac{1}{3} L$, so

$$
\begin{equation*}
U=M g y_{\mathrm{cm}}=\left(\frac{1}{2} k L^{2}\right) g\left(\frac{1}{3} L\right)=\frac{1}{6} k g L^{3} \tag{Equation5}
\end{equation*}
$$

If the rod is orientated with its least dense end touching the ground and tilted at angle of θ, then all of its component masses are reduced in height by a factor of $\sin \theta$ so y_{cm} becomes $\frac{2}{3} L \sin \theta$. Therefore,

$$
\begin{equation*}
U=M g y_{\mathrm{cm}}=\left(\frac{1}{2} k L^{2}\right) g\left(\frac{2}{3} L \sin \theta\right)=\frac{1}{3} k g L^{3} \sin \theta \tag{Equation6}
\end{equation*}
$$

If the rod is orientated with its least dense end touching the ground and tilted at angle of θ, then all of its component masses are reduced in height by a factor of $\sin \theta$ so y_{cm} becomes $\frac{1}{3} L \sin \theta$. Therefore,

$$
\begin{equation*}
U=M g y_{\mathrm{cm}}=\left(\frac{1}{2} k L^{2}\right) g\left(\frac{1}{3} L \sin \theta\right)=\frac{1}{6} k g L^{3} \sin \theta \tag{Equation7}
\end{equation*}
$$

